Nuclear import of dimerized ribosomal protein Rps3 in complex with its chaperone Yar1
نویسندگان
چکیده
After their cytoplasmic synthesis, ribosomal proteins need to be transported into the nucleus, where they assemble with ribosomal RNA into pre-ribosomal particles. Due to their physicochemical properties, they need protection from aggregation on this path. Newly synthesized ribosomal protein Rps3 forms a dimer that is associated with one molecule of its specific chaperone Yar1. Here we report that redundant pathways contribute to the nuclear import of Rps3, with the classical importin α/β pathway (Kap60/Kap95 in yeast) constituting a main import route. The Kap60/Kap95 heterodimer mediates efficient nuclear import of Rps3 by recognition of an N-terminal monopartite nuclear localization signal (NLS). This Rps3-NLS is located directly adjacent to the Yar1-binding site and, upon binding of Kap60 to Rps3, Yar1 is displaced from the ribosomal protein in vitro. While Yar1 does not directly interact with Kap60 in vitro, affinity purifications of Yar1 and Rps3, however, revealed that Kap60 is present in the Rps3/Yar1 complex in vivo. Indeed we could reconstitute such a protein complex containing Rps3 and both Yar1 and Kap60 in vitro. Our data suggest that binding of Yar1 to one N-domain and binding of Kap60 to the second N-domain of dimerized Rps3 orchestrates import and protection of the ribosomal protein.
منابع مشابه
Yar1 protects the ribosomal protein Rps3 from aggregation.
2000 ribosomes have to be synthesized in yeast every minute. Therefore the fast production of ribosomal proteins, their efficient delivery to the nucleus and correct incorporation into ribosomal subunits are prerequisites for optimal growth rates. Here, we report that the ankyrin repeat protein Yar1 directly interacts with the small ribosomal subunit protein Rps3 and accompanies newly synthesiz...
متن کاملGenetic analysis of the ribosome biogenesis factor Ltv1 of Saccharomyces cerevisiae.
Ribosome biogenesis has been studied extensively in the yeast Saccharomyces cerevisiae. Yeast Ltv1 is a conserved 40S-associated biogenesis factor that has been proposed to function in small subunit nuclear export. Here we show that Ltv1 has a canonical leucine-rich nuclear export signal (NES) at its extreme C terminus that is both necessary for Crm1 interaction and Ltv1 export. The C terminus ...
متن کاملSequential domain assembly of ribosomal protein S3 drives 40S subunit maturation.
Eukaryotic ribosomes assemble by association of ribosomal RNA with ribosomal proteins into nuclear precursor particles, which undergo a complex maturation pathway coordinated by non-ribosomal assembly factors. Here, we provide functional insights into how successive structural re-arrangements in ribosomal protein S3 promote maturation of the 40S ribosomal subunit. We show that S3 dimerizes and ...
متن کاملGenetic and biochemical interactions among Yar1, Ltv1 and Rps3 define novel links between environmental stress and ribosome biogenesis in Saccharomyces cerevisiae.
In the yeast S. cerevisiae, ribosome assembly is linked to environmental conditions by the coordinate transcriptional regulation of genes required for ribosome biogenesis. In this study we show that two nonessential stress-responsive genes, YAR1 and LTV1, function in 40S subunit production. We provide genetic and biochemical evidence that Yar1, a small ankyrin-repeat protein, physically interac...
متن کاملCo-translational capturing of nascent ribosomal proteins by their dedicated chaperones
Exponentially growing yeast cells produce every minute >160,000 ribosomal proteins. Owing to their difficult physicochemical properties, the synthesis of assembly-competent ribosomal proteins represents a major challenge. Recent evidence highlights that dedicated chaperone proteins recognize the N-terminal regions of ribosomal proteins and promote their soluble expression and delivery to the as...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2016